Occurrence of normal and anomalous diffusion in polygonal billiard channels.

نویسندگان

  • David P Sanders
  • Hernán Larralde
چکیده

From extensive numerical simulations, we find that periodic polygonal billiard channels with angles which are irrational multiples of pi generically exhibit normal diffusion (linear growth of the mean squared displacement) when they have a finite horizon, i.e., when no particle can travel arbitrarily far without colliding. For the infinite horizon case we present numerical tests showing that the mean squared displacement instead grows asymptotically as t ln t. When the unit cell contains accessible parallel scatterers, however, we always find anomalous super-diffusion, i.e., power-law growth with an exponent larger than . This behavior cannot be accounted for quantitatively by a simple continuous-time random walk model. Instead, we argue that anomalous diffusion correlates with the existence of families of propagating periodic orbits. Finally we show that when a configuration with parallel scatterers is approached there is a crossover from normal to anomalous diffusion, with the diffusion coefficient exhibiting a power-law divergence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TRANSPORT IN POLYGONAL BILLIARD SYSTEMS by Matthew

Title of dissertation: TRANSPORT IN POLYGONAL BILLIARD SYSTEMS Matthew L. Reames, Doctor of Philosophy, 2009 Dissertation directed by: Professor J. Robert Dorfman Department of Physics The aim of this work is to explore the connections between chaos and diffusion by examining the properties of particle motion in non-chaotic systems. To this end, particle transport and diffusion are studied for ...

متن کامل

Rational billiards and flat structures

1 Polygonal billiards, rational billiards 3 1.1 Polygonal billiards . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Examples: a pair of elastic point-masses on a segment and a triple of point-masses on a circle . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Unfolding billiard trajectories, rational polygons . . . . . . . . . . . . 5 1.4 Example: billiard in the unit squar...

متن کامل

Comment to the article by Michael J. Saxton: A biological interpretation of transient anomalous subdiffusion. I. qualitative model.

In a recent paper (1), Michael J. Saxton proposes to interpret as anomalous diffusion the occurrence of apparent transient sub-diffusive regimes in mean-squared displacements (MSD) plots, calculated from trajectories of molecules diffusing in living cells, acquired by Single Particle (or Molecule) Tracking techniques (SPT or SMT). The demonstration relies on the analysis of both three-dimension...

متن کامل

Decay of correlations, Lyapunov exponents and anomalous diffusion in the Sinai billiard

We compute the decay of the velocity autocorrelation function, the Lyapunov exponent and the diffusion constant for the Sinai billiard within the framework of dynamical zeta functions. The asymptotic decay of the velocity autocorrelation function is found to be C(t) ∼ c(R)/t. The Lyapunov exponent for the corresponding map agrees with the conjectured limit λmap → −2 log(R) + C as R → 0 where C ...

متن کامل

On Polygonal Dual Billiard in the Hyperbolic Plane

Given a compact convex plane domain P , one defines the dual billiard transformation F of its exterior as follows. Let x be a point outside of P . There are two support lines to P through x; choose one of them, say, the right one from x’s view-point, and define F (x) to be the reflection of x in the support point. This definition applies if the support point is unique; otherwise F (x) is not de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 73 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2006